Настройка Rapberry Pi RASPBERRY PI MODEL B

Сборка и включение

Сборка Raspberry Pi для целей функционирования СУО Enter состоит из нескольких простых шагов:

- 1. Подключение кабеля питания USB MicroUSB к разъему "Power" Raspberry Pi и источнику питания (как правило USB-разъем Персонального табло оператора)
- Подключение Raspberry Pi кабелем HDMI(m) HDMI(m) к средству отображения информации (как правило - ТВ Персонального табло оператора) через соответствующие разъемы
- 3. Подготовка и подключение карты памяти формата SD (SDHC) с использованием специализированного образа файловой системы Raspberry Pi
- 4. Подключение кабеля к ЛВС СУО через разъем LAN, либо подключение WiFi-адаптера к одному из разъемов USB

После выполнения указанных шагов, Raspberry Pi готов к работе в СУО, достаточно только подать питание на разъем Power (включить Персональное табло оператора) и он будет автоматически запущен. Подключение к СУО, при корректной настройке, произойдет автоматически.

Запись образа на карту SD (SDHC)

Специалисты нашей компании регулярно производят обновление обновление образов операционной системы Raspberry Pi. Последнюю актуальную версию образа системы вы можете скачать в соответствующем разделе на Партнерском портале СУО.

После скачивания образа, вам необходимо распаковать ZIP-архив, все дальнейшие действия будут производиться с IMG-файлом из архива.

Для записи образа необходима SD-карта объемом не менее 4 ГБ, однако мы рекомендуем к использованию SDHC class 10, с объемом 8 ГБ.

Запись образа системы в ОС Windows

Для развертывания образа на флеш-накопителе вам понадобится приложение Win32 Disk Imager, последнюю актуальную копию которого можно скачать <u>тут</u>.

S	Win32	2 Disk Image	er –	. 🗆	×	
Image File	ge File			Device		
			2	3	-	
Copy MD5 Hash: Progress						
Version: 0.9.5 Waiting for a task.	Cancel	Read	Write	E	ixit	

Дальнейшие действия состоят из следующих шагов:

- 1. В разделе Image File выберите распакованный образ диска файловой системы
- 2. Выберите в разделе Device целевое устройство для записи образа
- 3. Нажмите кнопку Write для начала записи
- 4. После завершения записи, флеш-накопитель можно извлекать и использовать по назначению

Информация После замершения записи, в ОС Windows появится новое дисковое устройство маленького размера (менее 100МБ). Это - один из разделов только что записанного образа диска, имеющий файловую систему FAT. На SD-карте создан также и другой раздел с файловой системой Ext4, но он, без специализированных драйверов, в ОС семейства Windows не виден.

Запись образа системы в ОС Linux

Для развертывания образа на флеш-накопителе вам не понадобится никаких сторонних утилит, все манипуляции можно произвести средствами самой ОС:

- 1. Выполните команду df -h, чтобы выяснить какие устройства примонтированы.
- 2. Вставьте SD-карту в картридер и подключите его к компьютеру.
- 3. Запустите df -h снова. Новое устройство это ваша SD-карта. В левой колонке указывается имя устройства, оно выглядит как /dev/mmcblk0p1 или /dev/sdd1. Последняя часть имени устройства (p1 или 1 соответственно) этот обозначение раздела на карте. Но поскольку вы будете записывать карту полностью, а не отдельный раздел, то эту часть нужно исключить из имени устройства (т.е. должно остаться /dev/mmcblk0 или /dev/sdd). Обратите внимание, что устройство SD-карты может быть показано командой df -h несколько раз, например если карта уже отформатирована для использования с Raspberry Pi, то она содержит несколько разделов.
- 4. Теперь, когда название устройства SD-карты известно, ее нужно размонтировать, чтобы файлы на ней были не доступны, пока будет записываться образ карты. Это можно сделать следующей командой, заменив имя раздела/dev/sdd1 своим, полученным в пункте 3: umount /dev/sdd1 (если карта памяти содержит несколько разделов, то нужно размонтировать каждый из них).
- Запишите образ SD-карты следующей командой, заменив в ней в параметре if= путь к образу системы и в параметреof= имя устройства SD-карты. Убедитесь, что вы указали именно имя устройства SD-карты, а не имя раздела (т.е. sdd, а

не sdds1 или sddp1, или mmcblk0, а не mmcblk0p1). dd bs=1M if=~/2012-08-16-wheezy-raspbian/2012-08-16-wheezy-raspbian.img of=/dev/sdd

Возможно, придется указать команду **sudo** в строке перед **dd**, для того чтобы получить права суперпользователя. Команда **dd** не выводит какой либо информации о ходе процесса, поэтому может показаться, что она зависла. Запись может занять более пяти минут. Если ваш картридер имеет светодиод, то можно контролировать процесс по еге миганию. В противном случае, можно ввести команду **sudo pkill -USR1 -n -x dd** в другом окне эмулятора терминала для наблюдения за процессом.

6. По окончании записи, выполните команду **sudo sync**, чтобы убедиться, что все данные из буфера записи перенесены на карту и её можно безопасно отключить.

опасность Обратите внимание, что использование команды **dd** может повредить информацию на жестком диске вашего компьютера! Если вы укажете неверное устройство в командах, это уничтожит ваш раздел с системой Linux! Будьте предельно осторожны!

Настройка Raspberry Pi

Специалисты нашей компании максимально облегчили процесс конфигурирования устойства. Для настройки Raspberry Pi в рамках работы с СУО, вам необходимо отредактировать единственный конфигурационный файл **config.txt**, расположенный в корне FAT-раздела образа системы Raspberry Pi, записанного вами на SD-карту.Как уже говорилось ранее, этот раздел доступен как в OC Windows, так и в OC семейства Linux (имя раздела - **boot**).

По умолчанию, в данном файле содержатся следующие строки:

```
#Поворот экрана на 180*
#display_rotate=2
#Tип подключения - wifi или lan
connection_type=wifi
#WiFi - реквизиты доступа
apn_name=enter
apn_password=password
#CepBep CYO в формате адрес:порт, либо только адрес
suo_server=demo.enter-systems.ru
#CepBep точного времени
ntp_server=pool.ntp.org
```

Если устройство отображения Персонального табло СУО монтируется в перевернутом состоянии и изображение на экрене необходимо перевернуть, вам достаточно раскомментировать строку №2 **#display_rotate=2**, убрав символ **#** в начале строки.

Указав тип подключения **wifi** или **lan**, вы покажете Raspberry Pi какой тип подключения к СУО использовать.

Если используется беспроводное подключение к СУО, то точка доступа, к которой необходимо подключать Raspberry Pi должна поддерживать WPA2 Personal-авторизацию и AES/CCMP-шифрование. Имя точки WiFi и ключ доступа указываются в соответствующих полях конфигурационного файла.

Raspberry Pi рассчитан на работу в сети с DHCP-сервером, поэтому при подключении через любой из поддерживаемых интерфейсов, устройство будет ожидать получения адреса от сетевого DHCP-сервера.

Приложение персонального табло оператора СУО будет пытаться автоматически подключиться к серверу СУО после включения и загрузки устройства. Для этого в поле **suo_server** необходимо задать полный адрес к серверу СУО с указанием НТТР-порта, по которому сервер СУО отдает статический контент. В большинстве случаев это порт 80, его указание не обязательно (адрес сервера может быть **demo.enter-**

ssytems.ru либо **192.168.150.127**) в противном случае, необходимо задать адрес в формате **demo.enter-ssytems.ru:8000** или **192.168.150.127:8000**.

Для синхронизации времени на Raspberry Pi (устройство не обладает энергонезависимым счетчиком времени и время на нем может сбиваться при длительном отключении от сети электропитания), в последней строке конфигурационного файла можно ввести вдрес любого доступного в сети сервера времени, отдающего точное время в формате NTP (порт UDP 123). Это может быть как сервер в Интернете, так и локальный источник точного времени.

После внесения всех изменений в конфигурационный файл, его необходимо сохранить, а флеш-накопитель вставить в Raspberry Pi. Устройство готово к работе.

Запуск Raspberry Pi

После включения Персонального табло оператора, Raspberry Pi осуществляет загрузку OC, вводя на экран служебную информацию, содержащую сведения о текущем этапе загрузки.

Сразу после этого, ОС начинает загрузку оконного менеджера и браузера, в котором запускается приложение Персонального табло оператора СУО. В этот момент экран Персонального табло залит серым цветом.

Сразу после запуска приложения Персонального табло, на экране можно наблюдать текущее состояние устройства:

- В случае, когда сетевое подключение недоступно, на экран будет выведено служебное сообщение Not connected. Это означает, что выбранный способ подключения к ЛВС СУО для устройства недоступен: в конфигурационном файле может быть указан не тот интерфейс подключения, который используется, может быть поврежден кабель, указанны неверное имя точки доступа или пароль. В случае, если ни одно из указанных объяснений неисправности не помогло в ее устранении, обратитесь в техническую поддержку нашей компании за дальнейшими разъяснениями.
- В случае, когда сетевое подключение досутпно, а сервер СУО нет, на экран будет выведен текущий IP-адрес Raspberry Pi. Эта ситуация может быть вызвана двумя

возможностями: неверно указан адрес или порт подключения к серверу СУО, сервер СУО не запущен или неисправен.

 Если на экране отобразится меню настройки ТВ подобное изображению ниже - это означает, что устройство подключилось нормально, приложение запущено, связь с сервером СУО установлена. Можно приступать к конфигурированию Персонального табло оператора средствами СУО

Подключение к Raspberry Pi

Устройство с образом системы Персонального табло СУО поддерживает возможность подключения по следующим протоколам:

SSH

Порт: 22 Логин: pi Пароль: raspberry Подключение в ОС Windows можно выполнить при помощи программы <u>Putty</u>. В ОС Linux подключение выполняется командойssh IP_to_RPI -I pi, где IP_to_RPI необходимо заменить на IP-адрес устройства.

VNC

Протокол: **TightVNC** Порт: **5900** Пароль: не используется Подключение в ОС Windows можни

Подключение в OC Windows можно выполнить при помощи программы <u>TightVNC</u>. В OC Linux установка приложения возможна из стандартных репозиториев пакетным менеджером используемого дистрибутива.